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1. Introduction

“why all the fuss?”
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Personal Interests

The project initially comes from personal interest in:

• Software engineering
design smart abstractions to build powerful things

• Information architecture
exploit computers to manage large collections of 
structure information
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XMMS2 Land
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XMMS2 Media Library
• SQLite database

• Store of objects (“media”, typically songs) with 
arbitrary properties

• Denormalized schema, with unique (id, key)

• SQL queries require lots of JOINs
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id key value
42 artist Britney Spears
42 title Toxic
42 duration 245497
43 artist Beyonce



UI Requirements
• Browse

• Search

• Organize
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UI Requirements
• Browse

• Search

• Organize

i.e.
view & manipulate subsets of the media library
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The Problem

• Abstract the structure of the media library

• Simplify querying of subsets of the media library

• Share abstraction of such subsets among clients

• Allow refining, editing, composing the subsets

12



The Problem
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The Solution
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The Solution
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2. Concept

“what are you on about?”
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Collection: Definition
“A collection is a representation of a subset of 
the media library, structured as a Directed 
Acyclic Graph (DAG) of operators.”
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Universe

Compare
artist=“Pink Floyd”
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Collection: Definition
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Collection: Definition
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Collection: Definition
“A collection is a representation of a subset of 
the media library, structured as a Directed 
Acyclic Graph (DAG) of operators.”
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Source Operators
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Universe

Idlist

Reference

All media in the Media Library

Static list of media (by id)

All media in the saved collection $name in 
$namespace

$name
$namespace



Saved Collections
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Idlist

Playlists Collections

...

Idlist

...

Idlist

...

Idlist

...
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...
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year<=1975

...

“Default”

“DJ Mix”

“Cool playlist”
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Set Operators

26

Intersection

Union

Complement

1..N

1

1..N

All media present in all the operands

All media present in any of the operands

All media not present in the operand



Filter Operators
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Compare
$field
$operation
$value

Match
$field
$pattern

Has
$field

1

1

1

Similar to Compare, but takes a $pattern 
with wildcards (*, ?) instead of an exact value

All media that have $field set

All media where $field satisfies the 
comparison $operation with $value
($operation: <, <=, =, =>, >)



Example Structures
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Example Structures
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Example Structures
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Example Structures
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Example Structures
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Example Structures
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Example Structures
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Universe

Compare
artist=“The XX”

Union

Idlist

“Hipster Songs”

Reference
“Hipster Songs”
in ”Collections”

Compare
lastplayed<3days

Match
title=”Crystal*” Search



Remarks
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• Used to organize, browse, search, or any 
combination of those

• Can use different UI approaches to combine 
them, but all using the collection API

• Dynamic sets but allows manual edits



Collections 2.0

• Support for sources:

• Support “medialists” (ordered, with duplicates, 
as opposed to “mediasets”) in the DAG

• Token matching operator

• Fix, improve and optimize querying (more later)

36

id key value
42 artist Britney Spears
42 title Toxic
42 url file:///home/...

Google Summer of Code 2008 project by Erik Massop (nesciens)



Collections 2.0

• Support for sources:

• Support “medialists” (ordered, with duplicates, 
as opposed to “mediasets”) in the DAG

• Token matching operator

• Fix, improve and optimize querying (more later)
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id key source value
42 artist plugins/id3v2 Britny Spaers
42 artist clients/nycli Britney Spears
42 title plugins/id3v2 Toxic
42 url server file:///home/...

Google Summer of Code 2008 project by Erik Massop (nesciens)



Collections 2.0 Operators
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Token
$property
$value

1

All media where $property token-matches 
$value (e.g. “Floyd” matches “Pink Floyd”)

Order
$type
$order

1

Returns a medialist ordered by $order

Limit
$start
$length

1

Mediaset

1

Returns $length entries from the operand, 
starting at $start

Returns the mediaset of the operand (no 
ordering, no duplicate)



3. Usage

“how, then?”
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Command-line Interface
Collections are exposed in nycli (the new XMMS2 
CLI) through

collection patterns

e.g.:
• Idioteque
• Pink Floyd Echoes
• artist:“Sufjan Stevens” l:Illinois
• (genre:Rock OR genre:Pop/Rock) date<1980
• title~usa url:*ogg +tag.favourite in:Awesome
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Collection Patterns
• API helper function to parse patterns into 

collection structures

• Supported in multiple nycli commands:
• search <pattern>
• add <pattern>
• jump <pattern>
• coll create <name> <pattern>
• etc.

• More generally: share a common syntax across 
clients (GUI, CLI, etc)

Note: NOT a bijection with collection structures
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Collection Patterns
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nycli (new official CLI)
http://xmms2.sf.net/

http://xmms2.sf.net
http://xmms2.sf.net


Collection Patterns

43

abraca
http://abraca.xmms.se/

http://abraca.xmms.se
http://abraca.xmms.se


Collection Structure API
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all = coll_universe()
m_floyd = coll_match(all, field=”artist”,
                     operation=”=”
                     value=”Pink Floyd”)
m_early = coll_match(m_floyd, field=”year”,
                     operation=”<“,
                     value=”1975”)
m_static = coll_idlist([42,1337,666])
m_join = coll_union(m_early, m_static)



Collection (1.0) Query API
coll_query_ids(conn, coll, order[],
               limit_start, limit_len);

=> List of object ids matched by coll, ordered by the list 
of properties order, optionally restricted to a range.

coll_query_infos(conn, coll, order[],
                 limit_start, limit_len,

              fetch[], group[]);

=> Dict of properties (selected by fetch) of objects 
matched by coll, ordered by the list of properties 
order, optionally restricted to a range and grouped.
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Collection Query Example
coll_query_ids(conn, m_join,
               [‘artist’,‘album’,‘tracknr’]);
=> [412, 413, 414, 323, 5454, 4234, ...]

coll_query_infos(conn, m_join,
                 [‘artist’,‘album’,‘tracknr’],
                 0, 50,

             [‘artist’, ‘title’]);
=> [{artist: ‘Pink Floyd’, title: ‘Eclipse’},
    {artist: ‘Pink Floyd’, title: ‘Echoes’},
    {artist: ‘Britney Spears’, title: ‘Toxic’},
    ...]
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Collection Query Example
coll_query_infos(conn, m_join,
                 [‘artist’,‘album’],
                 0, 50,

             [‘artist’,‘album’], [‘album’]);
=> [{artist: ‘Pink Floyd’, album: ‘Meddle’},
    {artist: ‘Britney Spears’, album: ‘Foo’},
    ...]
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Collection Server API

Save collections in the XMMS2 server:

xmmsc_coll_save(conn, coll, name, namespace);

xmmsc_coll_get(conn, name, namespace);

xmmsc_coll_list(conn, namespace);

xmmsc_coll_rename(conn, name, to, namespace);

xmmsc_coll_remove(conn, name, namespace);

xmmsc_coll_find(conn, media_id, namespace);
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Example GUIs
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Spring
http://my-trac.assembla.com/spring/

http://my-trac.assembla.com/spring/
http://my-trac.assembla.com/spring/


Example GUIs
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Example GUIs
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Spring
http://my-trac.assembla.com/spring/

http://my-trac.assembla.com/spring/
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Example GUIs
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abraca
http://abraca.xmms.se/

http://abraca.xmms.se
http://abraca.xmms.se


Example GUIs
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Etude
http://code.google.com/p/etude-music-player/

http://code.google.com/p/etude-music-player/
http://code.google.com/p/etude-music-player/


4. Future

“fair enough, what’s next?”
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Collections 2.0

Finish & Merge:

• New querying API

• Finalize support for sources

• Performance optimization

• More tests
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Coll 2.0: Advanced Queries

59

Current querying too limited:

• No count

• No custom aggregation function

• No variable in operators (lastplayed<NOW-1day)

• Simplistic grouping, always returns flat tuples

=> Collections 2.0 will allow specifying the “cluster
      structure” to return.

Not unlike Freebase querying, API still under works.



New Uses/GUI Front-Ends

• Save filtered views, load and edit them

• Organize using “shelf analogy”:

• spatial

• drag entities as filters (e.g. artist, tag) or 
atomically (e.g. selection of tracks)

• New & custom views, e.g. on a timeline, by 
properties, etc.

• Share across XMMS2 server instances (à la XSPF)
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S4

• New XMMS2 media library backend, optimized 
for our data model

• Uses collections as native query language

• Doesn’t support all operators, only works with 
sets (selection of properties, grouping, ordering 
done externally)

=> brings collections to the world, as a 
generic interface for browsing, searching 
& organizing collections of objects!
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(Storage System for Short Strings)



5. Conclusion

“is that it?”

62



Conclusion

• Simple common abstraction of searching, 
browsing and organization

• Flexible: can be modified, refined, composed

• Powerful API for building UIs to manipulate a 
large database of information

• Works well for XMMS2

• Could be applied to other collections of objects

63



Questions?

http://xmms2.sf.net/
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http://git.or.cz
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