
XMMS2 Collections
Sébastien Cevey <seb@cine7.net>

http://bytes.inso.cc/

Metaweb presentation (October 22, 2009)

Swiss Federal Institute
of Technology, Lausanne

XMMS2 Music Player Playlouder MSP

mailto:seb@cine7.net
mailto:seb@cine7.net
http://bytes.inso.cc
http://bytes.inso.cc

Outline

1. Introduction

2. Concept

3. Usage

4. Future

5. Conclusion

2

1. Introduction

“why all the fuss?”

3

Personal Interests

The project initially comes from personal interest in:

• Software engineering
design smart abstractions to build powerful things

• Information architecture
exploit computers to manage large collections of
structure information

4

XMMS2 Land

5

ClientsServer

IPC IPC

IPC

IPC

Interface: CLI, GUI, headless
Language: C, C++, Python, Ruby,

Perl, etc.

Ruby/Qt

CLI

last.fm scrobblerMedia
Library
(SQLite)

playlists

playback

Unix Domain Socket

TCP

XMMS2 Media Library
• SQLite database

• Store of objects (“media”, typically songs) with
arbitrary properties

• Denormalized schema, with unique (id, key)

• SQL queries require lots of JOINs

6

id key value
42 artist Britney Spears
42 title Toxic
42 duration 245497
43 artist Beyonce

UI Requirements
• Browse

• Search

• Organize

7

UI Requirements
• Browse

• Search

• Organize

8

UI Requirements
• Browse

• Search

• Organize

9

UI Requirements
• Browse

• Search

• Organize

10

UI Requirements
• Browse

• Search

• Organize

i.e.
view & manipulate subsets of the media library

11

The Problem

• Abstract the structure of the media library

• Simplify querying of subsets of the media library

• Share abstraction of such subsets among clients

• Allow refining, editing, composing the subsets

12

The Problem

13

Old API

client

server

API

user input

abstract
representation

SQL query

set of media

The Solution

14

Old API

client

server

API

user input

abstract
representation

SQL query

set of media

New API

client

server

API

The Solution

15

user input

abstract
representation

set of media

client

API

server

Collections =

2. Concept

“what are you on about?”

16

Collection: Definition
“A collection is a representation of a subset of
the media library, structured as a Directed
Acyclic Graph (DAG) of operators.”

17

Collection: Definition
“A collection is a representation of a subset of
the media library, structured as a Directed
Acyclic Graph (DAG) of operators.”

18

Universe

Collection: Definition
“A collection is a representation of a subset of
the media library, structured as a Directed
Acyclic Graph (DAG) of operators.”

19

Universe

Compare
artist=“Pink Floyd”

Collection: Definition
“A collection is a representation of a subset of
the media library, structured as a Directed
Acyclic Graph (DAG) of operators.”

20

Universe

Compare
artist=“Pink Floyd”

Compare
year<=1975

Collection: Definition
“A collection is a representation of a subset of
the media library, structured as a Directed
Acyclic Graph (DAG) of operators.”

21

Universe

Compare
artist=“Pink Floyd”

Compare
year<=1975

Intersection

Collection: Definition
“A collection is a representation of a subset of
the media library, structured as a Directed
Acyclic Graph (DAG) of operators.”

22

Universe

Idlist

Compare
artist=“Pink Floyd”

Compare
year<=1975

Intersection

Collection: Definition
“A collection is a representation of a subset of
the media library, structured as a Directed
Acyclic Graph (DAG) of operators.”

23

Universe

Idlist

Compare
artist=“Pink Floyd”

Compare
year<1975

Intersection

Union

Source Operators

24

Universe

Idlist

Reference

All media in the Media Library

Static list of media (by id)

All media in the saved collection $name in
$namespace

$name
$namespace

Saved Collections

25

Idlist

Playlists Collections

...

Idlist

...

Idlist

...

Idlist

...

Intersection

...

Compare
year<=1975

...

“Default”

“DJ Mix”

“Cool playlist”

“70’s favourites”

“Chillout tracks”

“Early stuff”

Set Operators

26

Intersection

Union

Complement

1..N

1

1..N

All media present in all the operands

All media present in any of the operands

All media not present in the operand

Filter Operators

27

Compare
$field
$operation
$value

Match
$field
$pattern

Has
$field

1

1

1

Similar to Compare, but takes a $pattern
with wildcards (*, ?) instead of an exact value

All media that have $field set

All media where $field satisfies the
comparison $operation with $value
($operation: <, <=, =, =>, >)

Example Structures

28

Universe

Example Structures

29

Universe

Compare
artist=“The XX”

Example Structures

30

Universe

Compare
artist=“The XX” Idlist

Example Structures

31

Universe

Compare
artist=“The XX”

Union

Idlist

“Hipster Songs”
Organize

Example Structures

32

Universe

Compare
artist=“The XX”

Union

Idlist

“Hipster Songs”

Reference
“Hipster Songs”
in ”Collections”

Example Structures

33

Universe

Compare
artist=“The XX”

Union

Idlist

“Hipster Songs”

Reference
“Hipster Songs”
in ”Collections”

Compare
lastplayed<3days Browse

Example Structures

34

Universe

Compare
artist=“The XX”

Union

Idlist

“Hipster Songs”

Reference
“Hipster Songs”
in ”Collections”

Compare
lastplayed<3days

Match
title=”Crystal*” Search

Remarks

35

• Used to organize, browse, search, or any
combination of those

• Can use different UI approaches to combine
them, but all using the collection API

• Dynamic sets but allows manual edits

Collections 2.0

• Support for sources:

• Support “medialists” (ordered, with duplicates,
as opposed to “mediasets”) in the DAG

• Token matching operator

• Fix, improve and optimize querying (more later)

36

id key value
42 artist Britney Spears
42 title Toxic
42 url file:///home/...

Google Summer of Code 2008 project by Erik Massop (nesciens)

Collections 2.0

• Support for sources:

• Support “medialists” (ordered, with duplicates,
as opposed to “mediasets”) in the DAG

• Token matching operator

• Fix, improve and optimize querying (more later)

37

id key source value
42 artist plugins/id3v2 Britny Spaers
42 artist clients/nycli Britney Spears
42 title plugins/id3v2 Toxic
42 url server file:///home/...

Google Summer of Code 2008 project by Erik Massop (nesciens)

Collections 2.0 Operators

38

Token
$property
$value

1

All media where $property token-matches
$value (e.g. “Floyd” matches “Pink Floyd”)

Order
$type
$order

1

Returns a medialist ordered by $order

Limit
$start
$length

1

Mediaset

1

Returns $length entries from the operand,
starting at $start

Returns the mediaset of the operand (no
ordering, no duplicate)

3. Usage

“how, then?”

39

Command-line Interface
Collections are exposed in nycli (the new XMMS2
CLI) through

collection patterns

e.g.:
• Idioteque
• Pink Floyd Echoes
• artist:“Sufjan Stevens” l:Illinois
• (genre:Rock OR genre:Pop/Rock) date<1980
• title~usa url:*ogg +tag.favourite in:Awesome

40

Collection Patterns
• API helper function to parse patterns into

collection structures

• Supported in multiple nycli commands:
• search <pattern>
• add <pattern>
• jump <pattern>
• coll create <name> <pattern>
• etc.

• More generally: share a common syntax across
clients (GUI, CLI, etc)

Note: NOT a bijection with collection structures

41

Collection Patterns

42

nycli (new official CLI)
http://xmms2.sf.net/

http://xmms2.sf.net
http://xmms2.sf.net

Collection Patterns

43

abraca
http://abraca.xmms.se/

http://abraca.xmms.se
http://abraca.xmms.se

Collection Structure API

44

all = coll_universe()
m_floyd = coll_match(all, field=”artist”,
 operation=”=”
 value=”Pink Floyd”)
m_early = coll_match(m_floyd, field=”year”,
 operation=”<“,
 value=”1975”)
m_static = coll_idlist([42,1337,666])
m_join = coll_union(m_early, m_static)

Collection (1.0) Query API
coll_query_ids(conn, coll, order[],
 limit_start, limit_len);

=> List of object ids matched by coll, ordered by the list
of properties order, optionally restricted to a range.

coll_query_infos(conn, coll, order[],
 limit_start, limit_len,

 fetch[], group[]);

=> Dict of properties (selected by fetch) of objects
matched by coll, ordered by the list of properties
order, optionally restricted to a range and grouped.

45

Collection Query Example
coll_query_ids(conn, m_join,
 [‘artist’,‘album’,‘tracknr’]);
=> [412, 413, 414, 323, 5454, 4234, ...]

coll_query_infos(conn, m_join,
 [‘artist’,‘album’,‘tracknr’],
 0, 50,

 [‘artist’, ‘title’]);
=> [{artist: ‘Pink Floyd’, title: ‘Eclipse’},
 {artist: ‘Pink Floyd’, title: ‘Echoes’},
 {artist: ‘Britney Spears’, title: ‘Toxic’},
 ...]

46

Collection Query Example
coll_query_infos(conn, m_join,
 [‘artist’,‘album’],
 0, 50,

 [‘artist’,‘album’], [‘album’]);
=> [{artist: ‘Pink Floyd’, album: ‘Meddle’},
 {artist: ‘Britney Spears’, album: ‘Foo’},
 ...]

47

Collection Server API

Save collections in the XMMS2 server:

xmmsc_coll_save(conn, coll, name, namespace);

xmmsc_coll_get(conn, name, namespace);

xmmsc_coll_list(conn, namespace);

xmmsc_coll_rename(conn, name, to, namespace);

xmmsc_coll_remove(conn, name, namespace);

xmmsc_coll_find(conn, media_id, namespace);

48

Example GUIs

49

Spring
http://my-trac.assembla.com/spring/

http://my-trac.assembla.com/spring/
http://my-trac.assembla.com/spring/

Example GUIs

50

Spring
http://my-trac.assembla.com/spring/

http://my-trac.assembla.com/spring/
http://my-trac.assembla.com/spring/

Example GUIs

51

Spring
http://my-trac.assembla.com/spring/

http://my-trac.assembla.com/spring/
http://my-trac.assembla.com/spring/

Example GUIs

52

Spring
http://my-trac.assembla.com/spring/

http://my-trac.assembla.com/spring/
http://my-trac.assembla.com/spring/

Example GUIs

53

Spring
http://my-trac.assembla.com/spring/

http://my-trac.assembla.com/spring/
http://my-trac.assembla.com/spring/

Example GUIs

54

Spring
http://my-trac.assembla.com/spring/

http://my-trac.assembla.com/spring/
http://my-trac.assembla.com/spring/

Example GUIs

55

abraca
http://abraca.xmms.se/

http://abraca.xmms.se
http://abraca.xmms.se

Example GUIs

56

Etude
http://code.google.com/p/etude-music-player/

http://code.google.com/p/etude-music-player/
http://code.google.com/p/etude-music-player/

4. Future

“fair enough, what’s next?”

57

Collections 2.0

Finish & Merge:

• New querying API

• Finalize support for sources

• Performance optimization

• More tests

58

Coll 2.0: Advanced Queries

59

Current querying too limited:

• No count

• No custom aggregation function

• No variable in operators (lastplayed<NOW-1day)

• Simplistic grouping, always returns flat tuples

=> Collections 2.0 will allow specifying the “cluster
 structure” to return.

Not unlike Freebase querying, API still under works.

New Uses/GUI Front-Ends

• Save filtered views, load and edit them

• Organize using “shelf analogy”:

• spatial

• drag entities as filters (e.g. artist, tag) or
atomically (e.g. selection of tracks)

• New & custom views, e.g. on a timeline, by
properties, etc.

• Share across XMMS2 server instances (à la XSPF)

60

S4

• New XMMS2 media library backend, optimized
for our data model

• Uses collections as native query language

• Doesn’t support all operators, only works with
sets (selection of properties, grouping, ordering
done externally)

=> brings collections to the world, as a
generic interface for browsing, searching
& organizing collections of objects!

61

(Storage System for Short Strings)

5. Conclusion

“is that it?”

62

Conclusion

• Simple common abstraction of searching,
browsing and organization

• Flexible: can be modified, refined, composed

• Powerful API for building UIs to manipulate a
large database of information

• Works well for XMMS2

• Could be applied to other collections of objects

63

Questions?

http://xmms2.sf.net/

64

http://git.or.cz
http://git.or.cz

